Leonid minkowski inequality
This book offers a concise In mathematical analysis, the Minkowski inequality establishes that the L p spaces are normed vector spaces. Let S {\textstyle S} be a measure space, let 1 ≤ p < ∞ {\textstyle 1\leq p<\infty } and let f {\textstyle f} and g {\textstyle g} be elements of L p (S). {\textstyle L^{p}(S).}.
The second edition features The proper Minkowski inequality: For real numbers $ x _ {i}, y _ {i} \geq 0 $, $ i = 1 \dots n $, and for $ p > 1 $, $$ \tag{1 } \left (\sum_{i=1} ^ { n } (x _ {i} + y _ {i}) \right) ^ {1/p} \leq \ \left (\sum_{i=1} ^ { n } x _ {i} ^ {p} \right) ^ {1/p} + \left (\sum_{i=1} ^ { n } y _ {i} ^ {p} \right) ^ {1/p}. $$.
A class of Strongly Log-Concave
(3) Minkowski’s Inequality For any p≥ 1, Minkowski says ||x+y|| p ≤ ||x|| p+||y|| p. The case when p= 1 is obviously true. To see it’s also true for any p>1 write ||x+y||p p = Xn i=1 |x i +y i|p = Xn i=1 |x i +y i||x i +y i| p−1. We know that for real numbers |x i + y i| ≤ |x i| + |y i|, Use this in the inequality above to conclude.They introduce, derive and apply If p>1, then Minkowski's integral inequality states that Similarly, if p>1 and a_k, b_k>0, then Minkowski's sum inequality states that [sum_ (k=1)^n|a_k+b_k|^p]^ (1/p) <= (sum_ (k=1)^n|a_k|^p)^ (1/p)+ (sum_ (k=1)^n|b_k|^p)^ (1/p). Equality holds iff the sequences a_1, a_2, and b_1, b_2, are proportional.